Thptlequydontranyenyenbai.edu.vn

Toán 9 Bài 4: Một số phép biến đổi căn thức bậc hai của biểu thức đại số Giải Toán 9 Cánh diều tập 1 trang 67, 68, 69, 70, 71

Tháng 6 13, 2024 by Thptlequydontranyenyenbai.edu.vn

Bạn đang xem bài viết Toán 9 Bài 4: Một số phép biến đổi căn thức bậc hai của biểu thức đại số Giải Toán 9 Cánh diều tập 1 trang 67, 68, 69, 70, 71 tại Thptlequydontranyenyenbai.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Giải Toán 9 Bài 4: Một số phép biến đổi căn thức bậc hai của biểu thức đại số là tài liệu vô cùng hữu ích giúp các em học sinh lớp 9 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 9 Cánh diều tập 1 trang 67, 68, 69, 70, 71.

Giải bài tập Toán 9 Cánh diều tập 1 Bài 4 – Chương III: Căn thức được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh học tập. Vậy mời thầy cô và các em theo dõi bài viết dưới đây của Thptlequydontranyenyenbai.edu.vn:

Mục Lục Bài Viết

  • Giải Toán 9 Cánh diều Tập 1 trang 70, 71
    • Bài 1
    • Bài 2
    • Bài 3
    • Bài 4
    • Bài 5

Giải Toán 9 Cánh diều Tập 1 trang 70, 71

Bài 1

Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức:

a. sqrt {left( {5 - x} right)_{}^2} với x ge 5;

b. sqrt {left( {x - 3} right)_{}^4};

c. sqrt {left( {y + 1} right)_{}^6} với y <  - 1.

Hướng dẫn giải:

a. sqrt {left( {5 - x} right)_{}^2}  = left| {5 - x} right| = x - 5 (Vì x ge 5 nên 5 - x le 0).

b. sqrt {left( {x - 3} right)_{}^4}  = left| {left( {x - 3} right)_{}^2} right| = left( {x - 3} right)_{}^2.

c. sqrt {left( {y + 1} right)_{}^6}  = sqrt {left[ {left( {y + 1} right)_{}^3} right]_{}^2}  = left| {left( {y + 1} right)_{}^3} right| =  - left( {y + 1} right)_{}^3 (Vì y <  - 1 nên y + 1 < 0 suy ra left( {y + 1} right)_{}^3 < 0).

Bài 2

Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức:

Khám Phá Thêm:   Viết đoạn văn nêu lí do yêu thích câu chuyện Ếch ngồi đáy giếng Viết đoạn văn nêu ý kiến lớp 4

a. sqrt {25left( {a + 1} right)_{}^2} với a >  - 1;

b. sqrt {x_{}^2left( {x - 5} right)_{}^2} với x > 5;

c. sqrt {2b} .sqrt {32b} với b > 0;

d. sqrt {3c} .sqrt {27c_{}^3} với c > 0.

Hướng dẫn giải:

a. sqrt {25left( {a + 1} right)_{}^2}  = sqrt {25} .sqrt {left( {a + 1} right)_{}^2}  = 5.left| {a + 1} right| = 5left( {a + 1} right) (Vì a >  - 1 nên a + 1 > 0).

b. sqrt {x_{}^2left( {x - 5} right)_{}^2}  = sqrt {x_{}^2} .sqrt {left( {x - 5} right)_{}^2}  = left| x right|.left| {x - 5} right| = xleft( {x - 5} right) (Vì x > 5 nên x - 5 > 0).

c. sqrt {2b} .sqrt {32b}  = sqrt {2b.32b}  = sqrt {64b_{}^2}  = sqrt {64} .sqrt {b_{}^2}  = 8left| b right| = 8b (Do b > 0).

d. sqrt {3c} .sqrt {27c_{}^3}  = sqrt {3c.27c_{}^3}  = sqrt {81c_{}^4}  = sqrt {81} .sqrt {c_{}^4}  = 9.left| {c_{}^2} right| = 9c_{}^2.

Bài 3

Áp dụng quy tắc về căn thức bậc hai của một thương, hãy rút gọn biểu thức:

a. sqrt {frac{{left( {3 - a} right)_{}^2}}{9}} với a > 3;

b. frac{{sqrt {75x_{}^5} }}{{sqrt {5x_{}^3} }} với x > 0;

c. sqrt {frac{9}{{x_{}^2 - 2x + 1}}} với x > 1;

d. sqrt {frac{{x_{}^2 - 4x + 4}}{{x_{}^2 + 6x + 9}}} với x ge 2.

Hướng dẫn giải:

a. sqrt {frac{{left( {3 - a} right)_{}^2}}{9}}  = frac{{sqrt {left( {3 - a} right)_{}^2} }}{{sqrt 9 }} = frac{{left| {3 - a} right|}}{3} = frac{{a - 3}}{3} (Vì a > 3 nên 3 - a < 0).

b. frac{{sqrt {75x_{}^5} }}{{sqrt {5x_{}^3} }} = sqrt {frac{{75x_{}^5}}{{5x_{}^3}}}  = sqrt {25x_{}^2}  = sqrt {25} .sqrt {x_{}^2}  = 5left| x right| = 5x (Do x > 0).

c. sqrt {frac{9}{{x_{}^2 - 2x + 1}}}  = sqrt {frac{9}{{left( {x - 1} right)_{}^2}}}  = frac{{sqrt 9 }}{{sqrt {left( {x - 1} right)_{}^2} }} = frac{3}{{left| {x - 1} right|}} = frac{3}{{x - 1}} (Vì x > 1 nên x - 1 > 0).

d. sqrt {frac{{x_{}^2 - 4x + 4}}{{x_{}^2 + 6x + 9}}}  = sqrt {frac{{left( {x - 2} right)_{}^2}}{{left( {x + 3} right)_{}^2}}}  = frac{{sqrt {left( {x - 2} right)_{}^2} }}{{sqrt {left( {x + 3} right)_{}^2} }} = frac{{left| {x - 2} right|}}{{left| {x + 3} right|}} = frac{{x - 2}}{{x + 3}} (Vì x ge 2 nên x - 2 ge 0,,x + 3 > 0).

Bài 4

Trục căn thức ở mẫu:

a. frac{9}{{2sqrt 3 }};

b. frac{2}{{sqrt a }} với a > 0;

c. frac{7}{{3 - sqrt 2 }};

d. frac{5}{{sqrt x  + 3}} với x > 0;x ne 9;

e. frac{{sqrt 3  - sqrt 2 }}{{sqrt 3  + sqrt 2 }};

g. frac{1}{{sqrt x  - sqrt 3 }} với x > 0,x ne 3.

Hướng dẫn giải:

a. frac{9}{{2sqrt 3 }} = frac{{9sqrt 3 }}{{2sqrt 3 .sqrt 3 }} = frac{{9sqrt 3 }}{{2.3}} = frac{{9sqrt 3 }}{6} = frac{{3sqrt 3 }}{2}.

b. frac{2}{{sqrt a }} = frac{{2sqrt a }}{{sqrt a .sqrt a }} = frac{{2sqrt a }}{a}.

c. frac{7}{{3 - sqrt 2 }} = frac{{7left( {3 + sqrt 2 } right)}}{{left( {3 - sqrt 2 } right)left( {3 + sqrt 2 } right)}} = frac{{7left( {3 + sqrt 2 } right)}}{{9 - 2}} = frac{{7left( {3 + sqrt 2 } right)}}{7} = 3 + sqrt 2.

d. frac{5}{{sqrt x  + 3}} = frac{{5left( {sqrt x  - 3} right)}}{{left( {sqrt x  + 3} right)left( {sqrt x  - 3} right)}} = frac{{5left( {sqrt x  - 3} right)}}{{x - 9}}.

e. frac{{sqrt 3  - sqrt 2 }}{{sqrt 3  + sqrt 2 }} = frac{{left( {sqrt 3  - sqrt 2 } right)left( {sqrt 3  - sqrt 2 } right)}}{{left( {sqrt 3  + sqrt 2 } right)left( {sqrt 3  - sqrt 2 } right)}} = frac{{3 - 2sqrt 6  + 2}}{{3 - 2}} = 5 - 2sqrt 6.

g. frac{1}{{sqrt x  - sqrt 3 }} = frac{{1left( {sqrt x  + sqrt 3 } right)}}{{left( {sqrt x  - sqrt 3 } right)left( {sqrt x  + sqrt 3 } right)}} = frac{{sqrt x  + sqrt 3 }}{{x - 3}}.

Bài 5

Rút gọn biểu thức: frac{{sqrt a }}{{sqrt a  - sqrt b }} - frac{{sqrt b }}{{sqrt a  + sqrt b }} - frac{{2b}}{{a - b}} với a ge 0,b ge 0,a ne b.

Cảm ơn bạn đã xem bài viết Toán 9 Bài 4: Một số phép biến đổi căn thức bậc hai của biểu thức đại số Giải Toán 9 Cánh diều tập 1 trang 67, 68, 69, 70, 71 tại Thptlequydontranyenyenbai.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Bài Viết Liên Quan

Tổng hợp các lỗi Youtube phổ biến nhất (Error Youtube 500, 501, 502, 503…)
Lời chúc Ngày Truyền thống Bộ đội Biên phòng
Webex Meetings: Cách cài đặt, tạo phòng và Join phòng học miễn phí
Previous Post: « Top 13 Quán ăn ngon nhất ở khu vực Hồ Tây, Hà Nội
Next Post: 15 kiểu tóc bồ câu “hack tuổi” cực đỉnh cho nàng 2022 »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết

Copyright © 2025 · Thptlequydontranyenyenbai.edu.vn - Thông Tin Kiến Thức Bổ Ích trực tiếp đá gà 789bet 789bet OKVIP