Bạn đang xem bài viết Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa dấu căn Ôn tập Toán 9 tại Thptlequydontranyenyenbai.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.
Tìm GTLN, GTNN của biểu thức chứa căn lớp 9 là một trong những kiến thức quan trọng giúp các em học sinh giải được các dạng bài tập tìm giá trị lớn nhất và giá trị nhỏ nhất. Vậy cách giải bài toán tìm GTLN, GTNN như thế nào? Mời các em học sinh hãy cùng Thptlequydontranyenyenbai.edu.vn theo dõi bài viết dưới đây nhé.
Tìm giá trị lớn nhất, giá trị nhỏ nhất bao gồm lý thuyết, cách giải, ví dụ minh họa kèm theo một số bài tập tự luyện. Thông qua tài liệu này sẽ giúp các bạn học sinh củng cố, nắm vững chắc kiến thức nền tảng, vận dụng với các bài tập cơ bản để đạt được kết quả cao trong kì thi sắp tới. Bên cạnh đó để học tốt môn Toán 9 các em xem thêm một số tài liệu như: chuyên đề Giải phương trình bậc 2 chứa tham số, bài tập hệ thức Vi-et và các ứng dụng .
I. Định nghĩa GTLN, GTNN
Cho hàm số y = f(x).
Kí hiệu tập xác định của hàm số f(x) là D
– Giá trị lớn nhất: m được gọi là giá trị lớn nhất của f(x) nếu:
f(x) ≤ m với mọi x ∈ D
Kí hiệu: m = maxf(x) x ∈ D hoặc giá trị lớn nhất của y = m.
– Giá trị nhỏ nhất: M được gọi là giá trị nhỏ nhất nếu:
f(x) ≥ m với mọi x ∈ D
Kí hiệu: m = minf(x) x∈ D hoặc giá trị nhỏ nhất của y = M.
II. Cách giải bài toán tìm gtln, gtnn lớp 9
1. Biến đổi biểu thức
Bước 1: Biến đổi biểu thức về dạng tổng hoặc hiệu của một số không âm với hằng số.
Bước 2: Thực hiện tìm giá trị lớn nhất, nhỏ nhất
2. Chứng minh biểu thức luôn dương hoặc luôn âm
Phương pháp:
– Để chứng minh biểu thức A luôn dương ta cần chỉ ra:
– Để chứng minh biểu thức A luôn âm ta cần chỉ ra:
3. Sử dụng bất đẳng thức Cauchy
Cho hai số a, b không âm ta có:
Dấu bằng xảy ra khi và chỉ khi a = b
4. Sử dụng bất đẳng thức chứa dấu giá trị tuyệt đối
Dấu “=” xảy ra khi và chỉ khi tích
III. Bài tập tìm GTLN, GTNN của biểu thức chứa căn
Bài 1: Tìm giá trị lớn nhất của biểu thức
Gợi ý đáp án
Điều kiện xác định x ≥ 0
Để A đạt giá trị lớn nhất thì đạt giá trị nhỏ nhất
Có
Lại có
Dấu “=” xảy ra
Min
Vậy Max
Bài 2: Tìm giá trị lớn nhất của biểu thức:
a. |
b. |
Gợi ý đáp án
a. Điều kiện xác định
Do
Dấu “=” xảy ra khi và chỉ khi x = 0
Vậy GTLN của E bằng 1 khi x = 0
b. Điều kiện xác định
Do
Dấu “=” xảy ra khi và chỉ khi x = 0
Vậy GTLN của D bằng 3/2 khi x = 0
Bài 3: Tìm giá trị lớn nhất của biểu thức:
Gợi ý đáp án
Điều kiện xác định:
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Dấu “=” xảy ra khi và chỉ khi
Bài 4: Cho biểu thức
a, Rút gọn A
b, Tìm giá trị lớn nhất của biểu thức
Gợi ý đáp án
Cách 1
a, với x > 0, x ≠ 1
b, với x > 0, x ≠ 1
Với x > 0, x ≠ 1, áp dụng bất đẳng thức Cauchy có:
Dấu “=” xảy ra (thỏa mãn)
Vậy max
Cách 2: Thêm bớt rồi dùng bất đẳng thức Cauchy hoặc đánh giá dựa vào điều kiện đề bài.
Với điều kiện x > 0 và x ≠ 1 ta có:
Theo bất đẳng thức Cauchy ra có:
Như vậy P ≤ -5
Đẳng thức xảy ra khi và chỉ khi hay x = 1/9
Vậy giá trị lớn nhất của P là -5 khi và chỉ khi x = 1/9
Cách 3: Dùng miền giá trị để đánh giá
Với điều kiện x > 0 và x ≠ 1 ta có:
(P < 1)
Để tổn tại P thì phương trình (*) phải có nghiệm, tức là:
∆ = (P – 1)2 – 36 ≥ 0 ⇔ (P – 1)2 ≥ 36 ⇔ P – 1 ≤ -6 (Do P < 1) ⇔ P ≤ -5
Như vậy P ≤ -5 khi
Vậy giá trị lớn nhất của P là -5 khi và chỉ khi x = 1/9
Bài 5: Cho biểu thức với x ≥ 0, x ≠ 4
a, Rút gọn A
b, Tìm giá trị nhỏ nhất của A
Gợi ý đáp án
a, với x ≥ 0, x ≠ 4
b, Có
Dấu “=” xảy ra ⇔ x = 0
Vậy min
Bài 6.
Cho hai số thực a,b # 0 thỏa mãn . Tìm GTLN, GTNN của
Gợi ý đáp án
Ta giả thiết ta có:
Mặt khác
Bài 7
Cho hai số x,y khác 0 thỏa mãn . Tìm min, max của A= xy+2024
Gợi ý đáp án
Từ giả thiết ta có:
Mặt khác
Bài 8
Cho x, y khác 0 biết . Tìm x,y để B=xy đạt GTLN, GTNN
Hướng dẫn giải
Ta có
Mặt khác
IV. Bài tập tự luyện tìm GTLN, GTNN
Bài 1: Tìm giá trị của x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:
a. |
b. |
Bài 2: Tìm giá trị của x nguyên để các biểu thức sau đạt giá trị lớn nhất:
a. |
b. |
c. |
Bài 3: Cho biểu thức:
a. Tính giá trị của biểu thức A khi x = 9
b. Rút gọn biểu thức B
c. Tìm tất cả các giá trị nguyên của x để biểu thức A.B đạt giá trị nguyên lớn nhất.
Bài 4: Cho biểu thức: . Tìm giá trị của x để A đạt giá trị lớn nhất.
Bài 5: Cho biểu thức:
a. Rút gọn A
b. Tìm giá trị lớn nhất của A
Bài 6: Cho biểu thức:
a. Rút gọn B
b. Tìm giá trị nhỏ nhất của B.
Bài 7: Với x > 0, hãy tìm giá trị lớn nhất của mỗi biểu thức sau:
a, | b, | c, |
d, | e, |
Bài 8: Cho biểu thức
a, Rút gọn biểu thức A
b, Tìm giá trị lớn nhất của A
Bài 9: Cho biểu thức
a, Tìm điều kiện xác định và rút gọn A
b, Tìm giá trị nhỏ nhất của A
Bài 10: Cho biểu thức
a, Tìm điều kiện xác định và rút gọn M
b, Tìm giá trị nhỏ nhất của M
Bài 12. Cho x,y khác 0 thỏa mãn . Tìm GTLN, GTNN của A= xy
Bài 13. Cho x,y là hai số thực thỏa mãn . Tìm GTLN, GTNN của A= xy
3. Cho x,y>0 thỏa mãn x+y=1. Tìm GTNN của
Bài 14: Tìm giá trị nhỏ nhất của mỗi biểu thức sau:
a, với x ≥ 0 | b, với x ≥ 0 |
c, với x > 0 | d, với x > 0 |
Cảm ơn bạn đã xem bài viết Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa dấu căn Ôn tập Toán 9 tại Thptlequydontranyenyenbai.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.