Bạn đang xem bài viết Đề thi tuyển sinh lớp 10 THPT Chuyên trường ĐH Khoa học tự nhiên năm 2012 – 2013 môn Toán Đề thi môn Toán tại Thptlequydontranyenyenbai.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.
ĐẠI HỌC QUỐC GIA HÀ NỘI
|
KỲ THI TUYỂN SINH LỚP 10 HỆ CHUYÊN
|
Câu I.
1) Giải phương trình:
2) Giải hệ phương trình:
Câu II.
1) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn đẳng thức: (x + y + 1)(xy + x + y) = 5 + 2(x + y)
2) Giả sử x, y là các số thực dương thỏa mãn điêu kiện
Tìm giá trị nhỏ nhất của biểu thức:
Câu III.
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Gọi M là một điểm trên cung nhỏ BC (M khác B, C và AM không đi qua O). Giả sử P là một điểm thuộc đoạn thẳng AM sao cho đường tròn đường kính MP cắt cung nhỏ BC tại điểm N khác M.
1) Gọi D là điểm đối xứng với điểm M qua O. Chứng minh rằng N, P, D thẳng hàng
2) Đường tròn đường kính MP cắt MD tại Q khác M. Chứng minh rằng Q là tâm đườn tròn nội tiếp tam giác AQN.
Câu IV.
Giả sử a, b, c là các số thực dương thỏa mãn a ≤ b ≤ 3 ≤ c; c ≥ b + 1; a + b ≥ c
Tìm giá trị nhỏ nhất của biểu thức:
Download tài liệu để xem thêm chi tiết.
Cảm ơn bạn đã xem bài viết Đề thi tuyển sinh lớp 10 THPT Chuyên trường ĐH Khoa học tự nhiên năm 2012 – 2013 môn Toán Đề thi môn Toán tại Thptlequydontranyenyenbai.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.