Bạn đang xem bài viết Giải Toán 9 Bài 7: Phương trình quy về phương trình bậc hai Giải SGK Toán 9 Tập 2 (trang 56, 57) tại Thptlequydontranyenyenbai.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.
Thptlequydontranyenyenbai.edu.vn mời quý thầy cô cùng tham khảo tài liệu Giải bài tập SGK Toán 9 Tập 2 trang 56, 57 để xem gợi ý giải các bài tập của Bài 7: Phương trình quy về phương trình bậc hai thuộc chương 4 Đại số 9.
Tài liệu được biên soạn với nội dung bám sát chương trình sách giáo khoa trang 56, 57 Toán lớp 9 tập 2. Qua đó, các em sẽ biết cách giải toàn bộ các bài tập của bài 7 Chương 4 trong sách giáo khoa Toán 9 Tập 2. Chúc các bạn học tốt.
Lý thuyết Phương trình quy về phương trình bậc hai
1. Phương trình trùng phương
Định nghĩa: Phương trình trùng phương là phương trình có dạng:
Cách giải:
Giải phương trình trùng phương
+ Đặt
+ Giải phương trình
+ Với mỗi giá trị tìm được của t (thỏa mãn ), lại giải phương trình
2. Phương trình chứa ẩn ở mẫu thức
Khi giải phương trình chứa ẩn ở mẫu thức, ta làm như sau:
Bước 1: Tìm điều kiện xác định của phương trình.
Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu thức.
Bước 3: Giải phương trình vừa nhận được.
Bước 4: Trong các giá trị tìm được của ẩn, loại các giá trị không thỏa mãn điều kiện xác định, các giá trị thỏa mãn điều kiện xác định là nghiệm của phương trình đã cho.
Giải bài tập toán 9 trang 56 tập 2
Bài 34 (trang 56 SGK Toán 9 Tập 2)
Giải các phương trình trùng phương:
a) x4 – 5x2 + 4 = 0;
b) 2x4 – 3x2 – 2 = 0;
c) 3x4 + 10x2 + 3 = 0
a) x4 – 5x2 + 4 = 0 (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : t2 – 5t + 4 = 0 (2)
Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm t1 = 1; t2 = c/a = 4
Cả hai giá trị đều thỏa mãn điều kiện.
+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1;
+ Với t = 4 ⇒ x2 = 4 ⇒ x = 2 hoặc x = -2.
Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.
b) 2x4 – 3x2 – 2 = 0; (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : 2t2 – 3t – 2 = 0 (2)
Giải (2) : Có a = 2 ; b = -3 ; c = -2
⇒ Δ = (-3)2 – 4.2.(-2) = 25 > 0
⇒ Phương trình có hai nghiệm
Chỉ có giá trị t1 = 2 thỏa mãn điều kiện.
+ Với t = 2 ⇒ x2 = 2 ⇒ x = √2 hoặc x = -√2;
Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.
c) 3x4 + 10x2 + 3 = 0 (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : 3t2 + 10t + 3 = 0 (2)
Giải (2) : Có a = 3; b’ = 5; c = 3
⇒ Δ’ = 52 – 3.3 = 16 > 0
⇒ Phương trình có hai nghiệm phân biệt
Cả hai giá trị đều không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
Bài 35 (trang 56 SGK Toán 9 Tập 2)
Quy đồng và khử mẫu ta được:
Vậy phương trình đã cho có 2 nghiệm phân biệt là:
Điều kiện x ≠ 2, x ≠ 5.
Quy đồng và khử mẫu ta được:
(x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)
Khi đó phương trình đã cho có 2 nghiệm là (thỏa mãn điều kiện)
Bài 36 (trang 56 SGK Toán 9 Tập 2)
Giải các phương trình:
a) (3x2 – 5x + 1)(x2 – 4) = 0;
b) (2x2 + x – 4)2 – (2x – 1)2 = 0.
a) (3x2 – 5x + 1)(x2 – 4) = 0
⇔ 3x2 – 5x + 1 = 0 (1)
hoặc x2 – 4 = 0 (2)
+ Giải (1): 3x2 – 5x + 1 = 0
Có a = 3; b = -5; c = 1 ⇒ Δ = (-5)2 – 4.3 = 13 > 0
Phương trình có hai nghiệm:
+ Giải (2): x2 – 4 = 0 ⇔ x2 = 4 ⇔ x = 2 hoặc x = -2.
Vậy phương trình có tập nghiệm
b) (2x2 + x – 4)2 – (2x – 1)2 = 0
⇔ (2x2 + x – 4 – 2x + 1)(2x2 + x – 4 + 2x – 1) = 0
⇔ (2x2 – x – 3)(2x2 + 3x – 5) = 0
⇔ 2x2 – x – 3 = 0 (1)
hoặc 2x2 + 3x – 5 = 0 (2)
+ Giải (1): 2x2 – x – 3 = 0
Có a = 2; b = -1; c = -3 ⇒ a – b + c = 0
⇒ Phương trình có hai nghiệm x = -1 và x = -c/a = 3/2.
+ Giải (2): 2x2 + 3x – 5 = 0
Có a = 2; b = 3; c = -5 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm x = 1 và x = c/a = -5/2.
Vậy phương trình có tập nghiệm
Giải bài tập toán 9 trang 56 tập 2: Luyện tập
Bài 37 (trang 56 SGK Toán 9 Tập 2)
c) 0,3x4 + 1,8x2 + 1,5 = 0
a) 9x4 – 10x2 + 1 = 0 (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : 9t2 – 10t + 1 = 0 (2)
Giải (2):
Có a = 9 ; b = -10 ; c = 1
⇒ a + b + c = 0
⇒ Phương trình (2) có nghiệm t1 = 1; t2 = c/a = 1/9.
Cả hai nghiệm đều thỏa mãn điều kiện.
+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1.
+ Với
Vậy các nghiệm của phương trình đã cho là:
Đặt , ta có:
(loại).
Do đó: suy ra
c) 0,3x4 + 1,8x2 + 1,5 = 0 (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó, (1) trở thành : 0,3t2 + 1,8t + 1,5 = 0 (2)
Giải (2) :
có a = 0,3 ; b = 1,8 ; c = 1,5
⇒ a – b + c = 0
⇒ Phương trình có hai nghiệm t1 = -1 và t2 = -c/a = -5.
Cả hai nghiệm đều không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
Điều kiện x ≠ 0
Đặt , ta có:
(loại)
Do đó suy ra
Bài 38 (trang 56 SGK Toán 9 Tập 2)
c) (x – 1)3 + 0,5x2 = x(x2 + 1,5)
Khi đó phương trình có 2 nghiệm phân biệt là:
Vậy phương trình đã cho có 2 nghiệm phân biệt.
Vậy phương trình đã cho có 2 nghiệm phân biệt.
c) (x – 1)3 + 0,5x2 = x(x2 + 1,5)
⇔ x3 – 3x2 + 3x – 1 + 0,5x2 = x3 + 1,5x
⇔ x3 + 1,5x – x3 + 3x2 – 3x + 1 – 0,5x2 = 0
⇔ 2,5x2 – 1,5x + 1 = 0
Có a = 2,5; b = -1,5; c = 1
⇒ Δ = (-1,5)2 – 4.2,5.1 = -7,75 < 0
Vậy phương trình vô nghiệm.
Vậy phương trình đã cho có 2 nghiệm phân biệt.
Khi đó
Nên (thỏa mãn)
Vậy phương trình có hai nghiệm
Điều kiện: x ≠ -1, x ≠ 4
Qui đồng và khử mẫu ta được:
Có a – b + c = 1 – (-7) – 8 = 0 nên
Vì = – 1 không thỏa mãn điều kiện của ẩn nên: phương trình có một nghiệm là x = 8.
Bài 39 (trang 56 SGK Toán 9 Tập 2)
Giải phương trình bằng cách đưa về phương trình tích:
a) (3x2 – 7x – 10).[2x2 + (1 – √5)x + √5 – 3] = 0
b) x3 + 3x2 – 2x – 6 = 0;
c) (x2 – 1)(0,6x + 1) = 0,6x2 + x;
d) (x2 + 2x – 5)2 = (x2 – x + 5)2.
a)
+ Giải phương trình (1).
Ta có nên phương trình (1) có hai nghiệm phân biệt x = – 1;x = 10.
+ Giải phương trình (2)
Ta thấy nên phương trình (2) có hai nghiệm phân biệt
Vậy phương trình đã cho có bốn nghệm
Vậy phương trình đã cho có ba nghiệm
Phương trình (*) có nên có hai nghiệm
Vậy phương trình đã cho có ba nghiệm phân biệt
Vậy phương trình có ba nghiệm
Bài 40 (trang 56 SGK Toán 9 Tập 2)
c)
Đặt ta được phương trình
Phương trình này có nên có hai nghiệm
+ Với ta có hay có nên phương trình có hai nghiệm
+ Với có nên phương trình vô nghiệm.
Vậy phương trình đã cho có hai nghiệm
Ta có
Đặt ta được phương trình có nên có hai nghiệm
+ Với
+ Với nên phương trình này vô nghiệm.
Vậy phương trình đã cho có nghiệm x = 0;x = 4.
c)
ĐK:
Đặt ta được phương trình nên có hai nghiệm
Với
Vậy phương trình có nghiệm x = 49.
Đặt , ta có phương trình
Phương trình trên có nên có hai nghiệm
+ Với
+ Với
Vậy phương trình có hai nghiệm
Cảm ơn bạn đã xem bài viết Giải Toán 9 Bài 7: Phương trình quy về phương trình bậc hai Giải SGK Toán 9 Tập 2 (trang 56, 57) tại Thptlequydontranyenyenbai.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.